automgrp : a GAP 4 package - Index I

_ A B C D E F G H I L M N O P Q R S T U V W

IMG_z2plusI 5.3.16
in 3.3.6
InfiniteDihedral 5.3.6
Installation instructions 1.2
Introduction 1.0
InverseAutomaton 4.2.11
IsAcyclic 4.2.9
IsAmenable 2.2.15
IsAutomatonGroup 2.1.7
IsAutomGroup 2.1.6
IsBireversible 4.2.12
IsBounded 4.2.6
IsContracting 2.2.9
IsFiniteState, for tree homomorphism 3.4.1
IsFiniteState, for tree homomorphism (semi)group 2.4.1
IsFractal 2.2.3
IsFractalByWords 2.2.4
IsGeneratedByAutomatonOfPolynomialGrowth 2.2.11
IsGeneratedByBoundedAutomaton 2.2.12
IsInvertible 4.2.2
IsIRAutomaton 4.2.14
IsMDReduced 4.2.17
IsMDTrivial 4.2.16
IsMealyAutomaton 4.1.2
IsNoncontracting 2.2.10
IsOfPolynomialGrowth 4.2.5
IsOfSubexponentialGrowth 2.2.14
IsomorphicAutomGroup 2.4.2
IsomorphicAutomSemigroup 2.4.3
IsomorphismPermGroup 2.3.20
IsOne 3.2.3
IsOneContr 3.2.4
IsReversible 4.2.13
IsSelfSimGroup 2.1.8
IsSelfSimilar 2.2.8
IsSelfSimilarGroup 2.1.9
IsSphericallyTransitive, for tree homomorphism 3.2.1
IsSphericallyTransitive, for tree homomorphism (semi)group 2.2.5
IsTransitiveOnLevel, for tree homomorphism 3.2.2
IsTransitiveOnLevel, for tree homomorphism (semi)group 2.2.7
IsTreeAutomorphismGroup 2.1.5
IsTrivial 4.2.1
Iterator 2.3.12

[Up]

automgrp manual
September 2018