C intro.tex 1. Introduction S 1.1. Short math background S 1.2. Installation instructions S 1.3. Quick example C groups.tex 2. Properties and operations with groups and semigroups S 2.1. Creation of groups and semigroups F 2.1. AutomatonGroup F 2.1. AutomatonGroup F 2.1. AutomatonGroup F 2.1. AutomatonSemigroup F 2.1. AutomatonSemigroup F 2.1. AutomatonSemigroup F 2.1. SelfSimilarGroup F 2.1. SelfSimilarGroup F 2.1. SelfSimilarGroup F 2.1. SelfSimilarSemigroup F 2.1. SelfSimilarSemigroup F 2.1. SelfSimilarSemigroup F 2.1. IsTreeAutomorphismGroup F 2.1. IsAutomGroup F 2.1. IsAutomatonGroup F 2.1. IsSelfSimGroup F 2.1. IsSelfSimilarGroup S 2.2. Basic properties of groups and semigroups F 2.2. TopDegreeOfTree F 2.2. DegreeOfTree F 2.2. IsFractal F 2.2. IsFractalByWords F 2.2. IsSphericallyTransitive! for tree homomorphism (semi)group F 2.2. ContainsSphericallyTransitiveElement F 2.2. IsTransitiveOnLevel! for tree homomorphism (semi)group F 2.2. IsSelfSimilar F 2.2. IsContracting F 2.2. IsNoncontracting F 2.2. IsGeneratedByAutomatonOfPolynomialGrowth F 2.2. IsGeneratedByBoundedAutomaton F 2.2. PolynomialDegreeOfGrowthOfUnderlyingAutomaton F 2.2. IsOfSubexponentialGrowth F 2.2. IsAmenable F 2.2. UnderlyingAutomaton F 2.2. AutomatonList! for tree homomorphism (semi)group F 2.2. RecurList! for tree homomorphism (semi)group S 2.3. Operations with groups and semigroups F 2.3. PermGroupOnLevel F 2.3. TransformationSemigroupOnLevel F 2.3. StabilizerOfLevel F 2.3. StabilizerOfFirstLevel F 2.3. StabilizerOfVertex F 2.3. FixesLevel F 2.3. FixesVertex F 2.3. Projection F 2.3. ProjectionNC F 2.3. ProjStab F 2.3. FindGroupRelations F 2.3. FindGroupRelations F 2.3. FindSemigroupRelations F 2.3. FindSemigroupRelations F 2.3. Iterator F 2.3. FindElement F 2.3. FindElements F 2.3. FindElementOfInfiniteOrder F 2.3. FindElementsOfInfiniteOrder F 2.3. SphericallyTransitiveElement F 2.3. Growth F 2.3. ListOfElements F 2.3. FindNucleus F 2.3. LevelOfFaithfulAction F 2.3. LevelOfFaithfulAction F 2.3. IsomorphismPermGroup F 2.3. IsomorphismPermGroup F 2.3. Random F 2.3. MarkovOperator F 2.3. MihailovaSystem F 2.3. AbelImage F 2.3. DiagonalPower F 2.3. MultAutomAlphabet F 2.3. UnderlyingAutomFamily S 2.4. Self-similar groups and semigroups defined by the wreath recursion F 2.4. IsFiniteState! for tree homomorphism (semi)group F 2.4. IsomorphicAutomGroup F 2.4. IsomorphicAutomSemigroup F 2.4. UnderlyingAutomatonGroup F 2.4. UnderlyingAutomatonSemigroup F 2.4. MonomorphismToAutomatonGroup F 2.4. MonomorphismToAutomatonSemigroup S 2.5. Contracting groups F 2.5. GroupNucleus F 2.5. GeneratingSetWithNucleus F 2.5. GeneratingSetWithNucleusAutom F 2.5. ContractingLevel F 2.5. ContractingTable F 2.5. UseContraction F 2.5. DoNotUseContraction S 2.6. Rewriting Systems F 2.6. AG_UseRewritingSystem F 2.6. AG_AddRelators F 2.6. AG_UpdateRewritingSystem F 2.6. AG_RewritingSystemRules C elements.tex 3. Properties and operations with group and semigroup elements S 3.1. Creation of tree automorphisms and homomorphisms F 3.1. TreeAutomorphism F 3.1. TreeHomomorphism F 3.1. Representative F 3.1. Representative S 3.2. Properties and attributes of tree automorphisms and homomorphisms F 3.2. IsSphericallyTransitive! for tree homomorphism F 3.2. IsTransitiveOnLevel! for tree homomorphism F 3.2. IsOne F 3.2. IsOneContr F 3.2. Order F 3.2. OrderUsingSections F 3.2. Perm F 3.2. PermOnLevel F 3.2. PermOnLevelAsMatrix F 3.2. TransformationOnLevel F 3.2. TransformationOnFirstLevel F 3.2. TransformationOnLevelAsMatrix F 3.2. Word S 3.3. Operations with tree automorphisms and homomorphisms F 3.3. product! for tree homomorphisms F 3.3. action! of tree homomorphism on letter F 3.3. action! of tree homomorphism on vertex F 3.3. Section! for tree homomorphism F 3.3. Sections F 3.3. Decompose F 3.3. in F 3.3. OrbitOfVertex F 3.3. PrintOrbitOfVertex F 3.3. PermActionOnLevel S 3.4. Elements of groups and semigroups defined by wreath recursion F 3.4. IsFiniteState! for tree homomorphism F 3.4. AllSections S 3.5. Elements of contracting groups F 3.5. AutomPortrait F 3.5. AutomPortraitBoundary F 3.5. AutomPortraitDepth C autom.tex 4. Noninitial automata S 4.1. Definition F 4.1. MealyAutomaton F 4.1. MealyAutomaton F 4.1. MealyAutomaton F 4.1. MealyAutomaton F 4.1. MealyAutomaton F 4.1. MealyAutomaton F 4.1. IsMealyAutomaton F 4.1. NumberOfStates F 4.1. SizeOfAlphabet F 4.1. AutomatonList! for automaton S 4.2. Tools F 4.2. IsTrivial F 4.2. IsInvertible F 4.2. MinimizationOfAutomaton F 4.2. MinimizationOfAutomatonTrack F 4.2. IsOfPolynomialGrowth F 4.2. IsBounded F 4.2. PolynomialDegreeOfGrowth F 4.2. AdjacencyMatrix F 4.2. IsAcyclic F 4.2. DualAutomaton F 4.2. InverseAutomaton F 4.2. IsBireversible F 4.2. IsReversible F 4.2. IsIRAutomaton F 4.2. MDReduction F 4.2. IsMDTrivial F 4.2. IsMDReduced F 4.2. DisjointUnion F 4.2. product! for noninitial automata F 4.2. SubautomatonWithStates F 4.2. AutomatonNucleus F 4.2. AreEquivalentAutomata C misc.tex 5. Miscellaneous S 5.1. Converters to and from FR package F 5.1. FR2AutomGrp F 5.1. AutomGrp2FR S 5.2. Trees F 5.2. NumberOfVertex F 5.2. VertexNumber S 5.3. Some predefined groups F 5.3. GrigorchukGroup F 5.3. UniversalGrigorchukGroup F 5.3. Basilica F 5.3. Lamplighter F 5.3. AddingMachine F 5.3. InfiniteDihedral F 5.3. AleshinGroup F 5.3. Bellaterra F 5.3. SushchanskyGroup F 5.3. Hanoi3 F 5.3. Hanoi4 F 5.3. GuptaSidki3Group F 5.3. GuptaFabrikowskiGroup F 5.3. BartholdiGrigorchukGroup F 5.3. GrigorchukErschlerGroup F 5.3. BartholdiNonunifExponGroup F 5.3. IMG_z2plusI F 5.3. Airplane F 5.3. Rabbit F 5.3. TwoStateSemigroupOfIntermediateGrowth F 5.3. UniversalD_omega